
 VVoolluummee--99,, NNuummbbeerr--11 JJuunn--DDeecc

GGaarrbbaaggee CCoo

Shubhnandan S Jamwal
Department of Computer Science & IT, University of Jammu, Jammu, India

Abstract: Garbage collection (GC) plays an important role in managing the memory automatically. But it is also a fact
that for interactive and real time applications long pauses are not desirable. In the current research paper we have
executed all the benchmarks of SPECjvm2008 with all the four garbage collectors available in java. After executing the
benchmark we found the time during which the application is paused due to major collection.
Keywords: Benchmarks, garbage collector, maj

 Introduction
GC is the process of automatic memory
inactive objects. The memory reclaimed is
Java and C# have incorporated garbage colle
Serial, Parallel, Parallel Old and Concurrent Mark
depends on the class of the machine. If the machine class is server then by default
selected. If the machine class is client the default collector is serial collector.

a. Serial Collector: The serial collector is suitable for small applications whose size is less than 100
mb. In this collector both young and old
paused when the collector is running.

b. Parallel Collector: This collector is suitable for machines having multiple processing units and has
to operate on large data sets. In this collector
major collections are performed serially.

c. Parallel Old Garbage Collector:
minor as well as major collections are performed p
collector uses a new algorithm for old generation garbage collection.

d. Concurrent Mark-Sweep (CMS) Collector:
But the major collection is performed simultaneously
for applications that require shorter garbage collection pauses and can afford to share processors with the
garbage collector thread when the application is running.

The garbage collector in the old generation is activated only when the old generation fills up with the
inactive objects. When garbage collector is running to collect the garbage (dead objects) in the
generation, the application is paused
collections.
Review of Literature
It was shown by Sunil Soman and Chandra Krintz [1
languages is dependent on the application behavior a
garbage collector perform best across all programs and heap sizes.
collectors behave in similar manner. But in case if the memory is limited the hybrid collector can i
the throughput of the application at least by 50%. It
Anthony Cocchi, and Stephen Smith [2
applications. The concurrent collector
[3]. They improved the throughput of the application, stack, and the behavior of cache
without foiling the other good qualities such as short pauses and high scalability. Their proposed algorithm
was implemented on the IBM production JVM and obtained a performance improvement by 26.7%, a
reduction in the heap consumption by
Perry Cheng, and Kathryn S McKinley [4
as a function of heap size for each benchmark is mainly dictated by collector time.
in small heaps and Semi Space is the best in large heaps. But the results are not satisfactory in small
memory. Garbage collection algorithms still trade for space and time which needs to be better balanced for
achieving the high performance computing.
management behavior of several Java programs from the SPECJVM98 benchmarks. The important
observation is that the default heap configuration used in IBM JDK 1.1.6 results in freq
collection and the inefficient execution of applications.

cc 22001155 pppp.. 110000--110022 IImmppaacctt FFaaccttoorr 22..88 available online at

DOI: 10.141079/IJITKM.2015.916

oolllleeccttiioonn TTiimmee dduuee ttoo MMaajj
CCoolllleeccttiioonn

Shubhnandan S Jamwal, Nitan Singh
Department of Computer Science & IT, University of Jammu, Jammu, India

Jamwalsnj@gmail.com

Garbage collection (GC) plays an important role in managing the memory automatically. But it is also a fact
that for interactive and real time applications long pauses are not desirable. In the current research paper we have

SPECjvm2008 with all the four garbage collectors available in java. After executing the
benchmark we found the time during which the application is paused due to major collection.

ks, garbage collector, major collection, pauses.

GC is the process of automatic memory management or reclamation in which memory is reclaimed from the
. The memory reclaimed is added to the pool of free memory. Many languages

Java and C# have incorporated garbage collectors. The four garbage collectors available in JDK 1.7.0.
Serial, Parallel, Parallel Old and Concurrent Mark-Sweep collectors. The selection of a particular collector
depends on the class of the machine. If the machine class is server then by default Parallel collector is
selected. If the machine class is client the default collector is serial collector.

The serial collector is suitable for small applications whose size is less than 100
both young and old generations are collected serially. The application execution is

en the collector is running.
This collector is suitable for machines having multiple processing units and has

to operate on large data sets. In this collector minor collections are performed simultaneously while the
major collections are performed serially.

c. Parallel Old Garbage Collector: This collector was introduced in J2SE 5.0 update 6.
minor as well as major collections are performed parallel with the use of multiple CPU’s
collector uses a new algorithm for old generation garbage collection.

Sweep (CMS) Collector: In this collector minor collection are performed
ormed simultaneously with the execution of the application.

shorter garbage collection pauses and can afford to share processors with the
ector thread when the application is running.

collector in the old generation is activated only when the old generation fills up with the
When garbage collector is running to collect the garbage (dead objects) in the

generation, the application is paused. These pauses are long as compared to the pauses caused by minor

unil Soman and Chandra Krintz [1] performance of the application in garbag
on the application behavior and available resources. They also proved that no

garbage collector perform best across all programs and heap sizes. When the resources are abundant all the
collectors behave in similar manner. But in case if the memory is limited the hybrid collector can i
the throughput of the application at least by 50%. It was shown by Clement R. Attanasio, David F. Bacon,

ony Cocchi, and Stephen Smith [2] that parallel collector is best for online transactions processing
The concurrent collector was modified by Katherine Barabash, Yoav Ossia, and Erez Petrank

the throughput of the application, stack, and the behavior of cache
without foiling the other good qualities such as short pauses and high scalability. Their proposed algorithm
was implemented on the IBM production JVM and obtained a performance improvement by 26.7%, a
reduction in the heap consumption by up to 13.4%, and no change in the pause time. Stephen M Blackburn,

Cheng, and Kathryn S McKinley [4] analyzed that the overall performance of generational collectors
as a function of heap size for each benchmark is mainly dictated by collector time. Mark Sweep does better
in small heaps and Semi Space is the best in large heaps. But the results are not satisfactory in small
memory. Garbage collection algorithms still trade for space and time which needs to be better balanced for

rformance computing. Kim, T., Chang, N., and Shin, H. [5] observed the memory
management behavior of several Java programs from the SPECJVM98 benchmarks. The important
observation is that the default heap configuration used in IBM JDK 1.1.6 results in freq
collection and the inefficient execution of applications.

available online at www.csjournalss.com

 Page | 100

jjoorr

Garbage collection (GC) plays an important role in managing the memory automatically. But it is also a fact

that for interactive and real time applications long pauses are not desirable. In the current research paper we have
SPECjvm2008 with all the four garbage collectors available in java. After executing the

emory is reclaimed from the
anguages including

in JDK 1.7.0. are
The selection of a particular collector

Parallel collector is

The serial collector is suitable for small applications whose size is less than 100
application execution is

This collector is suitable for machines having multiple processing units and has
minor collections are performed simultaneously while the

was introduced in J2SE 5.0 update 6. In this collector
arallel with the use of multiple CPU’s. ParallelOld

collector minor collection are performed serially.
with the execution of the application. It is appropriate

shorter garbage collection pauses and can afford to share processors with the

collector in the old generation is activated only when the old generation fills up with the
When garbage collector is running to collect the garbage (dead objects) in the old

These pauses are long as compared to the pauses caused by minor

in garbage collecting
They also proved that no

When the resources are abundant all the
collectors behave in similar manner. But in case if the memory is limited the hybrid collector can improve

by Clement R. Attanasio, David F. Bacon,
is best for online transactions processing

Katherine Barabash, Yoav Ossia, and Erez Petrank
 of the collector

without foiling the other good qualities such as short pauses and high scalability. Their proposed algorithm
was implemented on the IBM production JVM and obtained a performance improvement by 26.7%, a

Stephen M Blackburn,
] analyzed that the overall performance of generational collectors

Mark Sweep does better
in small heaps and Semi Space is the best in large heaps. But the results are not satisfactory in small
memory. Garbage collection algorithms still trade for space and time which needs to be better balanced for

] observed the memory
management behavior of several Java programs from the SPECJVM98 benchmarks. The important
observation is that the default heap configuration used in IBM JDK 1.1.6 results in frequent garbage

 VVoolluummee--99,, NNuummbbeerr--11 JJuunn--DDeecc

Stephen M Blackburn, Perry Cheng and Kathryn S McKinley
algorithmic features and how they match program characteristics to explain the direct and indir
garbage collection as a function of heap size on the SPEC JVM benchmarks. They find that the contiguous
allocation of copying collectors attains significant locality benefits over freelist allocators. The reduced
collection cost of the generational algorithms together with the locality benefit of contiguous allocation
motivates a copying nursery for newly allocated objects.
that compares all known garbage collection algorithms. The overhead funct
tune parameters and account for all relevant sources of time and space overhead of the different algorithms.
Experimentation
Benchmarks
In the current research paper SPECjvm2008 benchmark suite is used
SPECjvm2008 are studied in real JVM and n
benchmarks specified in the SPECjvm2008 are executed over a wide range of heap size varying from 20 mb
to 400 mb with an increment of 20 mb size. Each of the benchmark is executed 10 times in a fixed heap size
and the arithmetic mean is obtained. The performance of all garbage collectors
heap sizes. The Processor used in current research is Intel(R
bit system with 2038 megabyte RAM. The frequency of the memory is 795MHz. The operating System
used Microsoft Windows XP Professional Version 2002 Service Pack 2. Java used for performing the tests
is jdk1.7.0.
Garbage Collection time for majo
It is defined as the time spent in collecting the garbage due to maj
running in the old generation to collect the garbage, the application is paused during that time.
due to major collection is large as compare to pause caused by minor collection.
time due to major collection should be as short as possible.

Conclusion/Future Work
It has been observed that, initially for small heap size the garba
large. But as the heap size increases the garbage collection time decreases and after some
constant. From these experiments we conclude that heap size is an important factor in garbage collectio
Large the heap size small is the garbage collection time
metrics on garbage collection on all the benchmarks of SPECjvm2008

References

[1]. S. Soman, C. Krintz,“Application
New York, NY, USA, Vol. 80, No. 7, pp. 1037
[2]. C. R. Attanasio, D. F. Bacon, A. Cocchi, S. Smith, “A Comparative Evaluation of Parallel Garbage Collector and
Implementations”, LCPC’01 Proc. of the 14th Int. Conf. on Languages and Compilers for Parallel Computing,
Springer- Verlag Berlin, Heidelberg, LNCS 2624, pp. 177
[3]. K. Barabash, Y. Ossia, E. Petrank,“Mostly Concurrent Garbage Collection Revisited”, OOPSLA ‘03 P
18th Annual ACM SIGPLAN Conf. on Object
New York, NY, USA , 2003.
[4]. O. Agesen, D. L. Detlefs,“Finding References in Java Stacks”,
Collection and Memory Manag., Atlanta, GA, October 1997.
[5]. Kim, T., Chang, N., Shin, H.,“Bounding Worst Case Garbage Collection Time for Embedded Realtime Systems”,
RTAS ’00 Proc. of the Sixth IEEE Real Time Tech. and Appl. Symp.pp. 46, IEEE Compu. Society W
USA, 2000.
[6]. S. M. Blackburn, P. Cheng and K. S. McKinley, “Myths and Realities: The Performance Impact of Garbage
Collection”, Proc. of the Joint Int. Conf. on Measurement and Modeling of Compu. Sys., June 12
New York, NY, USA, 2004.
[7]. J. Heymann,“A Comprehensive Analytical Model for Garbage Collection Algorithms”, ACM SIGPLAN Notices,
Vol. 26, No. 8, August 1991.

cc 22001155 pppp.. 110000--110022 IImmppaacctt FFaaccttoorr 22..88 available online at

DOI: 10.141079/IJITKM.2015.916

ry Cheng and Kathryn S McKinley[6], experimental design shows key
algorithmic features and how they match program characteristics to explain the direct and indir
garbage collection as a function of heap size on the SPEC JVM benchmarks. They find that the contiguous
allocation of copying collectors attains significant locality benefits over freelist allocators. The reduced

ional algorithms together with the locality benefit of contiguous allocation
motivates a copying nursery for newly allocated objects. Jurgen Heymann [7] presented an analytical model
that compares all known garbage collection algorithms. The overhead functions are easy to measure and
tune parameters and account for all relevant sources of time and space overhead of the different algorithms.

SPECjvm2008 benchmark suite is used. The eleven benchmarks available in
real JVM and no simulators are being used in the experimentation.

benchmarks specified in the SPECjvm2008 are executed over a wide range of heap size varying from 20 mb
increment of 20 mb size. Each of the benchmark is executed 10 times in a fixed heap size

btained. The performance of all garbage collectors is measured over different
heap sizes. The Processor used in current research is Intel(R) Core(TM) Duo CPU T2250 @ 1.73GHz. 32
bit system with 2038 megabyte RAM. The frequency of the memory is 795MHz. The operating System
used Microsoft Windows XP Professional Version 2002 Service Pack 2. Java used for performing the tests

ajor collection
collecting the garbage due to major collection. When garbage c

generation to collect the garbage, the application is paused during that time.
due to major collection is large as compare to pause caused by minor collection. The garbage collection

collection should be as short as possible.

, initially for small heap size the garbage collection time due to major collection is
large. But as the heap size increases the garbage collection time decreases and after some
constant. From these experiments we conclude that heap size is an important factor in garbage collectio
Large the heap size small is the garbage collection time. In future work we would find the

on all the benchmarks of SPECjvm2008.

[1]. S. Soman, C. Krintz,“Application-specific Garbage Collection”, J. of Sys. and Software, Elsevier Science Inc.
New York, NY, USA, Vol. 80, No. 7, pp. 1037-1056, July 2007.
[2]. C. R. Attanasio, D. F. Bacon, A. Cocchi, S. Smith, “A Comparative Evaluation of Parallel Garbage Collector and

LCPC’01 Proc. of the 14th Int. Conf. on Languages and Compilers for Parallel Computing,
Verlag Berlin, Heidelberg, LNCS 2624, pp. 177–192, 2003.

[3]. K. Barabash, Y. Ossia, E. Petrank,“Mostly Concurrent Garbage Collection Revisited”, OOPSLA ‘03 P
18th Annual ACM SIGPLAN Conf. on Object-Oriented Prog., Systems, Languages, and App., pp. 255

O. Agesen, D. L. Detlefs,“Finding References in Java Stacks”, Submitted to OOPSLA’97 Workshop on Garbage
and Memory Manag., Atlanta, GA, October 1997.

[5]. Kim, T., Chang, N., Shin, H.,“Bounding Worst Case Garbage Collection Time for Embedded Realtime Systems”,
RTAS ’00 Proc. of the Sixth IEEE Real Time Tech. and Appl. Symp.pp. 46, IEEE Compu. Society W

S. M. Blackburn, P. Cheng and K. S. McKinley, “Myths and Realities: The Performance Impact of Garbage
Collection”, Proc. of the Joint Int. Conf. on Measurement and Modeling of Compu. Sys., June 12

[7]. J. Heymann,“A Comprehensive Analytical Model for Garbage Collection Algorithms”, ACM SIGPLAN Notices,

available online at www.csjournalss.com

 Page | 101

], experimental design shows key
algorithmic features and how they match program characteristics to explain the direct and indirect costs of
garbage collection as a function of heap size on the SPEC JVM benchmarks. They find that the contiguous
allocation of copying collectors attains significant locality benefits over freelist allocators. The reduced

ional algorithms together with the locality benefit of contiguous allocation
] presented an analytical model
ions are easy to measure and

tune parameters and account for all relevant sources of time and space overhead of the different algorithms.

eleven benchmarks available in
o simulators are being used in the experimentation. The eleven

benchmarks specified in the SPECjvm2008 are executed over a wide range of heap size varying from 20 mb
increment of 20 mb size. Each of the benchmark is executed 10 times in a fixed heap size

is measured over different
) Core(TM) Duo CPU T2250 @ 1.73GHz. 32

bit system with 2038 megabyte RAM. The frequency of the memory is 795MHz. The operating System
used Microsoft Windows XP Professional Version 2002 Service Pack 2. Java used for performing the tests

or collection. When garbage collector is
generation to collect the garbage, the application is paused during that time. The pause

The garbage collection

ge collection time due to major collection is
 time it becomes

constant. From these experiments we conclude that heap size is an important factor in garbage collection.
In future work we would find the effect of other

Collection”, J. of Sys. and Software, Elsevier Science Inc.

[2]. C. R. Attanasio, D. F. Bacon, A. Cocchi, S. Smith, “A Comparative Evaluation of Parallel Garbage Collector and
LCPC’01 Proc. of the 14th Int. Conf. on Languages and Compilers for Parallel Computing,

[3]. K. Barabash, Y. Ossia, E. Petrank,“Mostly Concurrent Garbage Collection Revisited”, OOPSLA ‘03 Proc. of the
Oriented Prog., Systems, Languages, and App., pp. 255-268, ACM

Submitted to OOPSLA’97 Workshop on Garbage

[5]. Kim, T., Chang, N., Shin, H.,“Bounding Worst Case Garbage Collection Time for Embedded Realtime Systems”,
RTAS ’00 Proc. of the Sixth IEEE Real Time Tech. and Appl. Symp.pp. 46, IEEE Compu. Society Washington, DC,

S. M. Blackburn, P. Cheng and K. S. McKinley, “Myths and Realities: The Performance Impact of Garbage
Collection”, Proc. of the Joint Int. Conf. on Measurement and Modeling of Compu. Sys., June 12–16, ACM Press,

[7]. J. Heymann,“A Comprehensive Analytical Model for Garbage Collection Algorithms”, ACM SIGPLAN Notices,

 VVoolluummee--99,, NNuummbbeerr--11 JJuunn--DDeecc

Figure 1. Time spent by garbage collector

cc 22001155 pppp.. 110000--110022 IImmppaacctt FFaaccttoorr 22..88 available online at

DOI: 10.141079/IJITKM.2015.916

Figure 1. Time spent by garbage collectors for all the benchmarks of SPECjvm2008 due to major collection

available online at www.csjournalss.com

 Page | 102

collection .

